首页> 外文OA文献 >Chaotic Simulated Annealing by A Neural Network Model with Transient Chaos
【2h】

Chaotic Simulated Annealing by A Neural Network Model with Transient Chaos

机译:基于瞬态神经网络模型的混沌模拟退火算法   混沌

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We propose a neural network model with transient chaos, or a transientlychaotic neural network (TCNN) as an approximation method for combinatorialoptimization problem, by introducing transiently chaotic dynamics into neuralnetworks. Unlike conventional neural networks only with point attractors, theproposed neural network has richer and more flexible dynamics, so that it canbe expected to have higher ability of searching for globally optimal ornear-optimal solutions. A significant property of this model is that thechaotic neurodynamics is temporarily generated for searching andself-organizing, and eventually vanishes with autonomous decreasing of abifurcation parameter corresponding to the "temperature" in usual annealingprocess. Therefore, the neural network gradually approaches, through thetransient chaos, to dynamical structure similar to such conventional models asthe Hopfield neural network which converges to a stable equilibrium point.Since the optimization process of the transiently chaotic neural network issimilar to simulated annealing, not in a stochastic way but in adeterministically chaotic way, the new method is regarded as chaotic simulatedannealing (CSA). Fundamental characteristics of the transiently chaoticneurodynamics are numerically investigated with examples of a single neuronmodel and the Traveling Salesman Problem (TSP). Moreover, a maintenancescheduling problem for generators in a practical power system is also analysedto verify practical efficiency of this new method.
机译:通过将瞬态混沌动力学引入神经网络,我们提出了一种具有瞬态混沌的神经网络模型,或一种瞬态混沌神经网络(TCNN)作为组合优化问题的一种近似方法。与仅具有点吸引子的常规神经网络不同,该提议的神经网络具有更丰富,更灵活的动力学,因此可以期望它具有更高的搜索全局最优或最优解的能力。该模型的一个重要特性是,混沌神经动力学是暂时生成的,以进行搜索和自我组织,并最终随着通常退火过程中与“温度”相对应的分叉参数的自动减小而消失。因此,神经网络通过瞬态混沌逐渐达到类似于类似于Hopfield神经网络的传统模型的动力学结构,该结构收敛到稳定的平衡点。由于瞬态混沌神经网络的优化过程与模拟退火相似,因此不需要随机方式,但是在确定性上是混沌方式,该新方法被视为混沌模拟退火(CSA)。瞬态混沌神经动力学的基本特征通过单个神经元模型和旅行商问题(TSP)的例子进行了数值研究。此外,还分析了实际电力系统中发电机的维护计划问题,以验证该新方法的实际效率。

著录项

  • 作者

    Chen, Luonan; Aihara, Kazuyuki;

  • 作者单位
  • 年度 1997
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号